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Why should we calculate the deflection for shafts or beams? 
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Deformation of a Beam Under Transverse Loading 

• Relationship between bending moment and 

curvature for pure bending remains valid for 

general transverse loadings. 

EI

xM )(1




• Cantilever beam subjected to concentrated 

load at the free end, 
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

1

• Curvature varies linearly with x 

• At the free end A,   A
A
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ρ
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• At the support B, 
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Deformation of a Beam Under Transverse Loading 

• Overhanging beam 

• Reactions at A and C 

• Bending moment diagram 

• Curvature is zero at points where the bending 

moment is zero, i.e., at each end and at E. 

EI

xM )(1




• Beam is concave upwards where the bending 

moment is positive and concave downwards 

where it is negative. 

• Maximum curvature occurs where the moment 

magnitude is a maximum. 

• An equation for the beam shape or elastic curve 

is required to determine maximum deflection 

and slope. 
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Equation of the Elastic Curve 

• From elementary calculus, simplified for  beam 

parameters, 
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• Substituting and integrating, 
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Equation of the Elastic Curve 

  21

00

CxCdxxMdxyEI

xx

 

• Constants are determined from boundary 

conditions 

• Three cases for statically determinant beams, 

– Simply supported beam 

0,0  BA yy

– Overhanging beam 
0,0  BA yy

– Cantilever beam 
0,0  AAy 

• More complicated loadings require multiple 

integrals and application of requirement for 

continuity of displacement and slope. 
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Direct Determination of the Elastic Curve From the 

Load Distribution 

• Equation for beam displacement becomes 

 xw
dx

yd
EI

dx

Md


4
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• Integrating four times yields 

• For a beam subjected to a distributed load, 

   xw
dx

dV

dx

Md
xV

dx

dM


2

2

• Constants are determined from boundary 

conditions. 
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Sample Problem 9.1 

ft 4ft15kips50

psi1029in7236814 64





aLP

EIW

For portion AB of the overhanging beam, 

(a) derive the equation for the elastic curve, 

(b) determine the maximum deflection,  

(c) evaluate ymax. 

SOLUTION: 

• Develop an expression for M(x) 

and derive differential equation for 

elastic curve. 

• Integrate differential equation twice 

and apply boundary conditions to 

obtain elastic curve. 

• Locate point of zero slope or point 

of maximum deflection. 

• Evaluate corresponding maximum 

deflection. 
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Sample Problem 9.1 

SOLUTION: 

• Develop an expression for M(x) and derive 

differential equation for elastic curve. 

- Reactions: 









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L

a
PR

L

Pa
R BA 1

- From the free-body diagram for section AD, 

 Lxx
L

a
PM  0

x
L

a
P

dx

yd
EI 

2

2

- The differential equation for the elastic 

curve, 
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Sample Problem 9.1 

PaLCLCL
L

a
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• Integrate differential equation twice and apply 

boundary conditions to obtain elastic curve. 
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 Substituting, 
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Sample Problem 9.1 

• Locate point of zero slope or point 

of maximum deflection. 
























32

6 L

x

L

x

EI

PaL
y

L
L

x
L

x

EI

PaL

dx

dy
m

m 577.0
3

31
6

0
2

























• Evaluate corresponding maximum 

deflection. 

  3
2
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Example 9.2 
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Example 9.2 
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Example 9.2 
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Example 9.2 
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Example 9.2 
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Example 9.2 
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Example 9.2 
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Method of Superposition 

Principle of Superposition: 

• Deformations of beams subjected to 

combinations of loadings may be 

obtained as the linear combination of 

the deformations from the individual 

loadings 

 

• Procedure is facilitated by tables of 

solutions for common types of 

loadings and supports. 
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Sample Problem 9.7 

For the beam and loading shown, 

determine the slope and deflection at 

point B. 

SOLUTION: 

Superpose the deformations due to Loading I and Loading II  as shown. 
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Sample Problem 9.7 

Loading I 

 
EI

wL
IB
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

In beam segment CB, the bending moment is 

zero and the elastic curve is a straight line. 
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Sample Problem 9.7 

   
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Combine the two solutions, 
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