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Why should we calculate the deflection for shafts or beams? 
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Deformation of a Beam Under Transverse Loading 

• Relationship between bending moment and 

curvature for pure bending remains valid for 

general transverse loadings. 
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• Cantilever beam subjected to concentrated 

load at the free end, 
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• Curvature varies linearly with x 

• At the free end A,   A
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• At the support B, 
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Deformation of a Beam Under Transverse Loading 

• Overhanging beam 

• Reactions at A and C 

• Bending moment diagram 

• Curvature is zero at points where the bending 

moment is zero, i.e., at each end and at E. 
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• Beam is concave upwards where the bending 

moment is positive and concave downwards 

where it is negative. 

• Maximum curvature occurs where the moment 

magnitude is a maximum. 

• An equation for the beam shape or elastic curve 

is required to determine maximum deflection 

and slope. 
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Equation of the Elastic Curve 

• From elementary calculus, simplified for  beam 

parameters, 
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• Substituting and integrating, 
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Equation of the Elastic Curve 
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• Constants are determined from boundary 

conditions 

• Three cases for statically determinant beams, 

– Simply supported beam 

0,0  BA yy

– Overhanging beam 
0,0  BA yy

– Cantilever beam 
0,0  AAy 

• More complicated loadings require multiple 

integrals and application of requirement for 

continuity of displacement and slope. 
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Direct Determination of the Elastic Curve From the 

Load Distribution 

• Equation for beam displacement becomes 

 xw
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• Integrating four times yields 

• For a beam subjected to a distributed load, 
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• Constants are determined from boundary 

conditions. 
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Sample Problem 9.1 

ft 4ft15kips50

psi1029in7236814 64





aLP

EIW

For portion AB of the overhanging beam, 

(a) derive the equation for the elastic curve, 

(b) determine the maximum deflection,  

(c) evaluate ymax. 

SOLUTION: 

• Develop an expression for M(x) 

and derive differential equation for 

elastic curve. 

• Integrate differential equation twice 

and apply boundary conditions to 

obtain elastic curve. 

• Locate point of zero slope or point 

of maximum deflection. 

• Evaluate corresponding maximum 

deflection. 
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Sample Problem 9.1 

SOLUTION: 

• Develop an expression for M(x) and derive 

differential equation for elastic curve. 

- Reactions: 
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- From the free-body diagram for section AD, 
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- The differential equation for the elastic 

curve, 
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Sample Problem 9.1 
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• Integrate differential equation twice and apply 

boundary conditions to obtain elastic curve. 
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 Substituting, 
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9 - 12 

Sample Problem 9.1 

• Locate point of zero slope or point 

of maximum deflection. 
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• Evaluate corresponding maximum 

deflection. 
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Example 9.2 
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Example 9.2 
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Example 9.2 
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Example 9.2 
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Example 9.2 
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Example 9.2 
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Example 9.2 
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Method of Superposition 

Principle of Superposition: 

• Deformations of beams subjected to 

combinations of loadings may be 

obtained as the linear combination of 

the deformations from the individual 

loadings 

 

• Procedure is facilitated by tables of 

solutions for common types of 

loadings and supports. 
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Sample Problem 9.7 

For the beam and loading shown, 

determine the slope and deflection at 

point B. 

SOLUTION: 

Superpose the deformations due to Loading I and Loading II  as shown. 
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Sample Problem 9.7 

Loading I 
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Loading II 
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In beam segment CB, the bending moment is 

zero and the elastic curve is a straight line. 
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Sample Problem 9.7 
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Combine the two solutions, 
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